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Acronym Definition Acronym Definition

ABS() Absolute Value H Horrizontal

AS&D ASRC Federal Space and Defense ICA Independent Component Analysis

AUC Area Under Curve INR Interference to Noise Ratio

CERBM Complex Entropy Rate Bound Minimization MME Maximum Minimum Eigenvalue ratio

CONUS Continental United States MSE Mean Square Error

CQAMSYM Complex Quadrature Amplitude Modulation NASA National Aeronautics and Space Administration

CSK Complex Signal Kurtosis NCCFASTICA Non Circular Complex Fast ICA

CW Continuous Wave PI Principal Investigator

dB Decibel QPSK Quadrature Phase Shift Keying)

DDC Digital Down Converter RADAR RAdio Detection And Ranging

DSP Digital Signal Processing RF Radio Frequency

DVB-S2 Digital Video Broadcasting - Satellite - Second Generation RFI Radio Frequency Interference

ERBM Entropy Rate Bound Minimization ROACH Reconfigurable Open Architecture Computing Hardware 

ESTO Earth Science Technology Office ROC Receiver Operating Characteristic

FB Full Band RRCOS Root Raise Cosine

FPGA Field Programmable Gate Array RSK Real Signal Kurtosis

Gbps Billions of Bits per Second SB Sub Band

GMI GPM Microwave Imager SERDES Serializer / Deserializer

GPM Global Precipitation Measurement SMAP Soil Moisture Active Passive

GSFC Goddard Space Flight Center V Vertical
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Motivation

• Unmitigated RFI (Radio Frequency Interference) 
can cause errors in science measurements
– L- and C-Band: soil moisture measurements over land
– L-, C- and X-band: ocean salinity, sea surface 

temperature, wind speed direction
– K band: water vapor, liquid water

• Approach
– RF front end development for 18 GHz (K band)

• These allocations are known to be corrupted by direct 
broadcast services

– Digital back end to allow sophisticated RFI detection 
and mitigation techniques
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L, X band RFI

SMAP TA H-pol 
1400 MHz

SMAP TA H-pol filtered
-15 -10 -5 0 5 10 15 20 25

30

35

40

45

50

55

60

 

 

180 200 220 240 260 280 300 320 340 360 380 400

10 GHz GMI 
Tb V-pol 
(Vertical)

SMAP (Soil Moisture Active 
Passive) algorithms developed 
previously under ESTO (Earth 
Science Technology Office)
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RFI from Geosynchronous Satellites 
Reflecting from the Surface

18 V Maximum of daily average RFI index

The 18 GHz Channel sees significant RFI from surface reflections around 
CONUS (Continental United States) and Hawaii 
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Picture from David W. Draper, [1]

GMI 
data
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Real Signal Kurtosis (RSK)

Given a complex baseband signal 𝑧 𝑛 = 𝐼 𝑛 + 𝑗𝑄 𝑛 , the fourth

standardized moment is computed independently for both the real

and imaginary vectors, I and Q, as was used in SMAP[3].

RSKI =
𝔼[ I−𝔼 I 4]

𝔼 (I−𝔼[I]) 2 − 3 ,     RSKQ =
𝔼[ Q−𝔼 Q 4]

𝔼 (Q−𝔼[Q]) 2 − 3

The test statistic, RSK [2,3] (Real Signal Kurtosis), is then defined as

RSK =
|RSKI|+|𝑅𝑆𝐾𝑄|

2
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Complex Signal Kurtosis

Given a complex baseband signal 𝑧 𝑛 = 𝐼 𝑛 + 𝑗𝑄(𝑛), moments 𝛼ℓ,𝑚 of 𝑧(𝑛) are defined as 

𝛼ℓ,𝑚 = 𝔼 (𝑧 − 𝔼 𝑧 )ℓ(𝑧 − 𝔼 𝑧 )∗𝑚 , ℓ ,𝑚 ∈ ℝ ≥ 0

With 𝜎2 = 𝛼1,1 , Standardized moments 𝜚ℓ,𝑚 can then be found as

𝜚ℓ,𝑚 =
𝛼ℓ,𝑚
𝜎ℓ+𝑚

Leading to the CSK (Complex Signal Kurtosis) RFI test statistic used [4].

𝐶𝐾 =
𝜚2;2 − 2 − 𝜚2;0

2

1 +
1
2
𝜚2;0

2
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Complex signal kurtosis (CSK) [4,5] is used to improve ability of the digital 
radiometer to detect RFI. It makes use of additional information in complex signals.
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Independent Component Analysis
• ICA [6] uses higher order statistics to perform blind source separation

• This suggests it may be useful for separating RFI from Gaussian noise in the 
radiometry context, studied in [7].

• We assume noise and RFI are statistically independent sources, mixing is linear, 
sources are non Gaussian

• Mixture model:  x = As, observe x

• ො𝒔 = Wx, ෝ𝒔 is the estimated independent source

Observation vector x

Linear Mixing 
A

Linear 
Un-mixing 

W

Source vector s

Original 
sources/signals

ෝ𝑠1(𝑛)

ෝ𝑠2(𝑛)

ෝ𝑠3(𝑛)

ෝ𝑠4(𝑛)

𝑠1(𝑛)

𝑠2(𝑛)

𝑠3(𝑛)

𝑠4(𝑛)

𝑥3(𝑛)

𝑥4(𝑛)

𝑥2(𝑛)

𝑥1(𝑛)

Estimated vector ෝ𝒔

Estimated 
sources/signals
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ICA RFI Detection

𝑠0 0 𝑠0 1 … 𝑠0 N − 1

𝑠1 0 𝑠1 1 … 𝑠1 N − 1

𝑠2 0 𝑠2 1 … 𝑠2 N − 1

𝑠3 0 𝑠3 1 … 𝑠3 N − 1

max
𝑘
{ABS(RSKk – 3)}

ICA 
Detector 
Output

Kurtosis

Kurtosis

Kurtosis

Kurtosis

RSK0

RSK1

RSK2

RSK3

Step 1: Take Kurtosis of each estimated 
independent component vector Step 2: Select the kurtosis value that 

deviated the furthest from 3

ICA Output
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ROC Curves and AUC
• Each point on an ROC curve can be 

represented by the set {FAR, PD}
– {False alarm Rate , Probability of Detection}

• ROC curves will generate from (0,0) to 
(1,1) by varying the threshold

• Poor detectors are close to the 1:1 line

• Better detectors show higher PD and 
smaller FAR 

• Figure of Merit = Area Under Curve (AUC)
– 0.5≤AUC ≤1 

– When AUC = 0.5 detector does not work

– When AUC = 1 the detector works perfectly

ROC curve example, from [8].
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Better Detection Worse Detection

AUC = 1 AUC = 0.5

Better Detection

Worse Detection
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AUC Results- ICA Performance - CW

More ICA results in [7], 
generally a marginal 
improvement in detection is 
seen

RSK = Real Signal Kurtosis
CSK = Complex Signal Kurtosis
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cerbm | RSK
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INR at AUC = 0.75

CSK cerbm

CSK cqamsym

CSK nccfastica

CSK erbm

CSK robustica

RSK nccfastica

RSK cqamsym

RSK cerbm

CSK direct 

RSK erbm

RSK direct 

RSK fastica

RSK robustica

CSK fastica

ICA Performance, CW d = 100%, N = 9000

Various ICA algorithms are tested [9,10,11,12,13,14,15,16,17].
No ICA pre-processing is done on ‘direct’ data sets.
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Eigenvalue Approach
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• Two objectives:
– Detection: Identify power measurements that 

have been contaminated with interference
• The Minimum Maximum Eigenvalue (MME) 

approach, adapted from the cognitive radio context 
[10], is applied here for RFI detection in passive 
remote sensing.

– Excision: Accurately guess what the power 
measurement would have been if the interfere 
were not there
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Conceptual Signal Model

Hypothesis Test / Signal Model

ℋ0: 𝑥 𝑘 = 𝑤 𝑘
ℋ1: 𝑥 𝑛 = 𝑤 𝑘 + 𝑟 𝑘

𝑆𝑁𝑅 =
𝑃𝑠
𝜎𝑤
2

Ps = E 𝑟 𝑘 2

𝑤 𝑘 ~𝒩(0, 𝜎𝑤
2) = Thermal Noise

𝑟[𝑘] = RFI Gaussian Noise

RFI

Satellite
Radiometer

Earth

(depiction not to scale)

DirecTV
Stationary Orbit

Polar Orbit
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Measure the Sample Covariance
(Oversampled)

The Eigenvalues of the 
covariance matrix are found

𝜆1 > 𝜆2 > ⋯ > 𝜆𝑀𝐿

The test statistic is then formed 
as

𝐓𝜆 =
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

Given our sampled signal x,

𝑥𝑖 𝑛 ≡ 𝑥 𝑛𝑀 + 𝑖 − 1 𝑖 = 1,2, … ,𝑀

𝐱 𝑛 ≡ 𝑥1 𝑛 , 𝑥2 𝑛 ,… 𝑥𝑀 𝑛 𝑇

ො𝐱 𝑛 ≡ 𝐱𝑇 𝑛 , 𝐱𝑇 𝑛 − 1 ,…𝐱𝑇 𝑛 − 𝐿 + 1 𝑇

𝐑𝑥 = 𝔼[ො𝐱 𝑛 ො𝐱𝐻 𝑛 ]

𝐑𝑥 𝑁𝑠 ≡
1

𝑁𝑠


𝑛=𝐿−1

𝐿−2+𝑁𝑠

ො𝐱 𝑛 ො𝐱𝐻 𝑛
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Eigenvalue Noise Power 
Estimate

Scale the minimum eigenvalue of the covariance matrix to estimate 
the variance of the Gaussian thermal noise. The limiting distributions 
from [19] help derive the scaling factor.

𝐑𝑥 → 𝜆1 > 𝜆2 > … ≥ 𝜆𝑀𝐿

lim
𝑁𝑠→∞

𝜆𝑚𝑖𝑛 = 𝜎2 1 − 𝑦 2

lim
𝑁𝑠→∞

𝜆𝑚𝑎𝑥 = 𝜎2 1 + 𝑦 2

𝜎w
2 = 𝜆𝑚𝑖𝑛

𝑁𝑠

𝑁𝑠 − 𝑀𝐿
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Wideband RFI – 5 QPSK 
Channels
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MME Detection Results
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Eigenvalue Detection method 
greatly outperforms all other 
methods tested (Kurtosis[2,3] 
and Spectral Kurtosis[20])



RFI Excision Performance
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Sample Variance
Compared to

Eigenvalue Variance Estimate

Eigenvalue Variance Estimate
outperforms sample variance 
at interference levels of -14db 
INR and greater.

Eigenvalue variance estimate 
accuracy depends on the 
complexity of the RFI

Sample 
Variance

Eigenvalue 
Estimate
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